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A hybrid spectral superposition method is presented that allows a smooth transition between two seemingly
distinct classes of localized wave solutions to the homogeneous scalar wave equation in free space; specifically,
luminal or focus wave modes, and superluminal or X waves. This representation, which is based on superpo-
sitions of products of forward plane waves moving at a fixed speed ��c and backward plane waves moving
at the speed c, is used to construct a large class of finite-energy superluminal-type X-shaped localized waves.
The latter are characterized by arbitrarily high-frequency bands and are suitable for applications in the micro-
wave and optical regime. In the limiting case �→c, one recaptures the well-known focus wave mode-type
localized wave solutions. A modified hybrid spectral representation, based on superpositions of products of
forward plane waves moving at a fixed speed c and backward plane waves moving at the speed ��c, allows
in the limit �→c a smooth transition from superluminal localized waves to paraxial luminal pulsed beams.
Although the proposed methods are applicable to a �n+1�-dimensional, n�2, scalar wave equation, the
discussion will be limited to the case n=2 for simplicity; also, so that comparisons can be made to related
recent results in the literature.
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I. INTRODUCTION

In recent years, there has been increasing interest in novel
classes of spatiotemporally localized solutions to various hy-
perbolic equations governing acoustic, electromagnetic, and
quantum wave phenomena. The bulk of the research along
these lines has been performed in connection with the basic
formulation, generation, guidance, propagation, scattering,
and diffraction of three distinct types of acoustic and electro-
magnetic localized waves �LWs� in free space: luminal, or
focus wave modes �FWMs�, superluminal, or X waves
�XWs�, and subluminal �see �1–7� for pertinent review litera-
ture�. Some work, however, has been done in the areas of
propagation of LWs in dispersive �see �8� and references
therein� and nonlinear �see �9� and references therein� media.
In general, both linear and nonlinear LW pulses exhibit dis-
tinct advantages in their performance in comparison to con-
ventional quasimonochromatic signals. Their spatiotemporal
localization and extended field depths render them very use-
ful in diverse physical applications, such as secure signaling,
laser-induced particle acceleration, ultrafast microscopy, high
resolution imaging, tissue characterization, photodynamic
therapy, etc.

The simplest spatiotemporally localized X-shaped pulse is
the “pure” X wave solution,

���,z,t� =
1

��2 + �a1 + i��z − �t��2
; � � �x2 + y2;

� �
1

���/c�2 − 1
�1.1�

to the �3+1�-dimensional homogeneous scalar wave equa-
tion in free space. In this expression, ��c and a1 is an
arbitrary positive parameter. This solution, which was intro-
duced by Lu and Greenleaf �10� in 1992, is an infinite-energy
wave packet propagating without distortion along the z di-
rection with the superluminal speed �. Analogous spatiotem-
porally localized X waves can be found in higher spatial
dimensions; specifically,

��x1,x2,…xn,t� = ��
j=1

n−1

xj
2 + �a1 + i��xn − �t��2	�2−n�/2

; n � 3.

�1.2�

It is well known �11�, however, that no such solution is pos-
sible for the �2+1�-D scalar wave equation

� �2

�x2 +
�2

�z2 −
1

c2

�2

�t2	��x,z,t� = 0. �1.3�

A proof of this statement can be given as follows. Introduc-
ing the new variable �=z−�t , ��c, Eq. �1.3� can be rewrit-
ten as

� �2

�x2 −
1

�2

�2

��2	��x,�� = 0, �1.4�

a general solution of which is given by ��x ,��=�1�x−���
+�2�x+���. The latter is nonlocalized. At z=0, in particular,
��x ,0 , t�=�1�x+��t�+�2�x−��t� consists of a sum of two*Electronic address: besieris@vt.edu
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distortionless wave solutions traveling along the positive and
negative x directions with speed ��.

In their recent work on X-shaped solutions to the
�2+1�-D scalar wave equation, Ciattoni and Di Porto �12�
presented the fundamental solution

�0�x,�� =
2�a1 + i���

x2 + �a1 + i���2 , �1.5�

as the �2+1�-D analog of the �3+1�-D X wave in Eq. �1.1�.
The expression above can be brought into the form

�0�x,�� =
1

a1 + i�x + ���
+

1

a1 − i�x − ���
. �1.6�

Based on the discussion above, this structure is diffraction-
less but not localized. This is evident in Fig. 1�a�, which
shows a surface plot of Re
�0�x ,���. In contrast, Fig. 1�b� is
a surface plot of the real part of the localized �3+1�-D X
wave given in Eq. �1.1�. For both plots, �=1.001c and a1
=10−2 m.

Our main aim in this paper is to examine the possibility of
diffractionless �infinite energy� and limited-diffraction �finite
energy� spatiotemporally localized X-shaped solutions to the
�2+1�-D scalar wave equation �1.3�. It will be established
that such solutions do exist; in contradistinction, however, to
the pure �3+1�-D X wave pulse in Eq. �1.1�, they involve
two fixed speeds: the superluminal speed � and the sublumi-
nal speed c2 /�.

II. „2+1…-D X-SHAPED SOLUTIONS TO THE SCALAR
WAVE EQUATION

A. Superluminal spectral representation

A general solution to the �2+1�-D scalar wave equation
�1.3� can be expressed in terms of the superluminal spectral
representation �3�,

��x,z,t� = �
−	

	

d
�
−	

	

dkxexp
i
�
�

c
�z −

c2

�
t	�

�exp�− i��z − �t��kx
2 + 
2�exp�− ikxx���kx,
� ,

�2.1�

based on the invariance of the scalar wave equation under a
generalized Lorentz transformation. This representation,
which consists of superpositions of products of forward
plane waves moving at a fixed speed ��c and backward
plane waves moving at the subluminal speed c2 /�, is the
most natural setting for deriving all X-shaped localized so-
lutions to the scalar wave equation. Unfortunately, one can-
not use Eq. �2.1� to examine the limiting condition �→c due
to the presence of �. For this reason, it will be prove conve-
nient in the following discussion to transform Eq. �2.1� into a
new spectral representation involving the fixed speeds � and
c.

B. Hybrid spectral representation

In Eq. �2.1�, the following transformations are made from
the wave numbers �
 ,kx� to the new wave numbers �� ,
�:

− ��
2 + kx
2 + �
�c/�� = � + 
�c/��;

− ��
2 + kx
2 + �
��/c� = � − 
 . �2.2�

One, then, obtains

��x,z,t� = �
−	

	

d��
−	

	

d
 e−i��z−�t�ei
�z+ct�

�exp
− ix��2

�2 + 2�1 +
�

c
	�
����,
� .

�2.3�

This hybrid spectral representation is based on superposi-

FIG. 1. �Color online� �a� Unlocalized Ciattoni-Di Porto �2+1�-D wave packet: Re
�0�x ,��� vs x ,�. �b� Localized �3+1�-D X wave:
Re
��� ,��� vs � ,�; Parameter values: a1=10−2 m, �=1.00c.
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tions of products of forward plane waves moving at a fixed
speed ��c and backward plane waves moving at the speed
c. In the limiting case �→c, one recaptures a variant of the
�2+1�-D luminal bidirectional spectral representation �13�
that leads to well-known FWM localized wave solutions.

C. „2+1…-D focus X waves

It follows from Eq. �2.3� that both

�c�x,z,t� = �
−	

	

d��
−	

	

d
 e−i��z−�t�ei
�z+ct�

�cos
x��2

�2 + 2�1 +
�

c
	�
��c��,
� ,

�s�x,z,t� = �
−	

	

d��
−	

	

d
 e−i��z−�t�ei
�z+ct�

�sin
x��2

�2 + 2�1 +
�

c
	�
��s��,
� ,

�2.4�

are solutions to the �2+1�-D scalar wave equation. In the
sequel, only the former will be considered in detail. The
spectrum in Eq. �2.4a� is chosen as follows:

�c��,
� = �2/���
 − 
��exp�− a0��

�
� + 2�2�1 +
�

c
	
�−1/2

H���H�
� . �2.5�

Here, ��·� denotes the Dirac delta function, H�·� is the Heavi-
side unit step function, and a0 ad 
� are arbitrary positive
parameters. With the introduction of this spectrum, the inte-
gration over 
 can be carried out very simply and the re-
maining integration over � yields �see �14�, p. 249�

�c�x,z,t;
�� = exp�i
��z + ct��

�exp
�2�1 +
�

c
	
��a0 + i�z − �t���

�
�a0 + i�z − �t� + ��x/��2 + �a0 + i�z − �t��2

��x/��2 + �a0 + i�z − �t��2

� exp
− �2�1 +
�

c
	

�
���x/��2 + �a0 + i�z − �t��2� . �2.6�

A number of observations can be made regarding this solu-
tion. For 
�=0, one obtains the restricted exact solution

��x,z,t� =
�a0 + i�z − �t� + ��x/��2 + �a0 + i�z − �t��2

��x/��2 + �a0 + i�z − �t��2
=� a0 + i�z − �t�

�x/��2 + �a0 + i�z − �t��2 +
1

��x/��2 + �a0 + i�z − �t��2
, �2.7�

which involves only the speed �. The second part underneath
the square root in �2.7b� is localized transversely and axially,
but the first part is not. As a consequence, the entire solution
is distortionless but unlocalized as expected from the previ-
ous discussion. For 
��0, the solution given in Eq. �2.6� is
spatiotemporally localized due to the presence of the third
exponential term.

In order to understand the nature of �c�x ,z , t ;
�� in �2.6�
more completely, it should be noted that carrying out care-
fully the limit �→c yields the luminal solution

�c�x,z,t;
����→c → �FWM�x,z,t;
�� =
exp�i
��z + ct��
�a0 + i�z − ct�

�exp�− 
�
x2

a0 + i�z − ct�	 , �2.8�

modulo a constant multiplier term. This is the �2+1�-D ver-
sion of the FWM originally introduced by Brittingham in
1983 �15�. The wave function consists of an envelope trav-
eling along the positive z direction with speed c, modulated

by a plane wave moving in the negative z direction with the
same speed. The entire wave packet sustains only local de-
formations; more precisely, it regenerates for values of t
equal to n� /
 , n being an integer. The FWM is physically
unrealizable because it contains infinite energy.

For the reasons given above, the solution �c�x ,z , t ;
�� in
Eq. �2.6� is referred to as a �2+1�-D focus X wave �FXW�.
�This nomenclature was introduced in Ref. �3� for an analo-
gous solution to the �3+1�-D scalar wave equation.� For �
�c, it is an X-shaped, transversely and axially localized
pulse, except that its highly focused central region has a tight
exponential localization, analogous to that of a FWM. As the
speed � approaches c from above, the �2+1�-D focus X
wave acquires the properties of the luminal �2+1�-D FWM
given in Eq. �2.8�. The main purpose of the hybrid form of
�c�x ,z , t ;
�� in Eq. �2.6� is to allow for such a smooth tran-
sition. An additional advantage of the hybrid form is that it
obviates the presence of backward wave components moving
at the luminal speed c. To make the last point clearer, the first
two exponential terms in Eq. �2.6� can be combined in order
to yield the following alternative form of the �2+1�-D focus
X wave:

�2+1�-DIMENSIONAL X-SHAPED LOCALIZED WAVES PHYSICAL REVIEW E 72, 056612 �2005�

056612-3



�c�x,z,t;
�� = exp
�2�1 +
�

c
	
�a0�

�exp
i
��1 − c/��−1�z −
c2

�
t	�

�
�a0 + i�z − �t� + ��x/��2 + �a0 + i�z − �t��2

��x/��2 + �a0 + i�z − �t��2

� exp
− �2�1 +
�

c
	

�
���x/��2 + �a0 + i�z − �t��2� . �2.9�

This expression seems to be unidirectional in the sense that it
consists of an envelope traveling in the positive z direction
with the superluminal speed �, multiplied by a plane wave
also moving in the positive z direction, however, at the sub-
luminal speed c2 /�. Of course, the unidirectionality of the
wave packet is only apparent, as it is made clear in the hy-
brid form.

The modulus of �2+1�-D focus X wave, in either the
hybrid form given in Eq. �2.6� or the superluminal form in
Eq. �2.9�, depends only of x and z−�t. As a consequence, it
moves along the positive z direction with a superluminal
speed � rigidly, without sustaining any distortion. This means
that �c�x ,z , t ;
�� contains infinite energy. The real part of
this function regenerates periodically along the z direction.
The regeneration period equals �t= �2�n� / �
��1+ �c /���,
where n is an integer. Figure 2�a� shows a surface plot of
Re
�c�x ,z , t ;
��� for the parameter values 
�=40m−1, a0

=10−3m and �=2c. The X shape of the �2+1�-D focus X
wave is clearly evident. The transition of the wave packet
into a �2+1�-D FWM is depicted in Fig. 2�b�, where the
values of 
� and a0 have been kept the same but �
=1.000 000 001c.

D. „2+1…-D finite-energy X-shaped localized waves

Let ���
� /c�rad/s� and consider the superposition

�c�x,z,t� =
1

�
�

0

	

d�� �c�x,z,t;���G���� , �2.10�

where �c�x ,z , t ;
�=�� /c� is the �2+1�-D FXW solution
given in Eq. �2.6�. If ĝ�t� denotes the complex analytic signal
corresponding to the temporal spectrum G����, one obtains
the finite-energy �2+1�-D X-shaped localized wave solution

�c�x,z,t� =
�a0 + i�z − �t� + ��x/��2 + �a0 + i�z − �t��2

��x/��2 + �a0 + i�z − �t��2

� ĝ
�t +
z

c
	 − i

1

c
�2�1 +

�

c
	�a0 + i�z − �t�

− ��x/��2 + �a0 + i�z − �t��2�� . �2.11�

As an illustrative example, consider the spectrum

G���� = ��� − �0�q exp�− a1��� − �0��H��� − �0� ,

�2.12�

with a1, �0�0 and q�−1. The complex analytic signal as-
sociated with this spectrum is given explicitly as follows
��14�, p. 137�:

ĝ�t� = ��q + 1�exp�− �0�a1 − it���a1 − it�−q−1. �2.13�

When this result is used in conjunction with Eq. �2.11�, one
obtains

FIG. 2. �Color online� �a� �2+1�-D focus X wave: Re
�FXW�x ,� ;
��� vs x ,�, with parameter values �=2c, 
�=40 m−1, and a0

=10−3 m. �b� Transition to a �2+1�-D focus wave mode: Re
�FXW�x ,� ;
��� vs x ,�, with parameter values �=1.000 000 1c, 
�=40 m−1, and
a0=10−3 m.
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�c�x,z,t� = ��q + 1�

�
�a0 + i�z − �t� + ��x/��2 + �a0 + i�z − �t��2

��x/��2 + �a0 + i�z − �t��2

�
1

pq+1exp�− �0p�;

p � a1 − i�t +
z

c
	 −

1

c
�2�1 +

�

c
	
a0 + i�z − �t�

− ��x/��2 + �a0 + i�z − �t��2� . �2.14�

It should be noted that carrying out carefully the limit �
→c yields the luminal solution

�c�x,z,t���→c → �MPS�x,z,t� =
exp�i��0/c��z + ct��

�a0 + i�z − ct�

�exp�−
�0

c

x2

a0 + i�z − ct�	
��a2 − i�z + ct� +

x2

a0 + i�z − ct�	
−q−1

;

a2 � a1c . �2.15�

modulo a constant multiplier term. This is the �2+1�-D ver-
sion of the finite-energy modified power spectrum �MPS�
pulse originally derived by Ziolkowski �1� from a superpo-
sition of pure FWMs. For this reason, the solution �c�x ,z , t�
in �2.14� is referred to as a �2+1�-D modified focus X wave
�MFXW�. For ��c, it is an X-shaped, transversely and axi-
ally localized pulse, except that its highly focused central
region has a tight exponential localization, analogous to that
of a MPS pulse.

It should be noted that the presence of a superluminal
speed in the finite energy MFXW solution in Eq. �2.14� does
not contradict relativity. If the parameters are chosen so that
the solution contains mostly forward propagating compo-

nents, the pulse moves superluminally with almost no distor-
tion up to a certain distance zd, and then it slows down to a
luminal speed c, with significant accompanying distortion.
Although the peak of the pulse does move superluminally up
to zd, it is not causally related at two distinct ranges z1 , z2
� �0,zd�. Thus, no information can be transferred superlumi-
nally from z1 to z2. The physical significance of the �2+1�-D
MFXW is due to its spatiotemporal localization.

Figure 3 shows surface plots of the real part of the �2
+1�-D MFXW for the parameter values �=1.5c , a0

=10−4 /��m� , q=0, a1=103/c�s� , �0=60c�rad/s�, and dif-
ferent values of �t= �2�n� / ���0 /c��1+ �c /��� at which the
wave packet is expected to partially regenerate. The X shape
of the �2+1�-D MFXW is clearly evident. The finite energy
of the pulse causes a distortion of the pulse shape at the
range �t�209.44�m� for the given parameters. The transi-
tion of the wave packet into a �2+1�-D MPS pulse is de-
picted in Fig. 4, for the parameter values �=1.000 01c, a0
=10−2 /��m�, a1=103/c�s�, q=0, and �0=3c�rad/s�, again
for different ranges �t= �2�n� / ���0 /c��1+ �c /��� at which
the wave packet is expected to partially regenerate.

III. „2+1…D SPLASH MODES AND FOCUSED PULSED
BEAMS

Recent advances in ultrafast optical technology have
made possible the generation of single-cycle and half-cycle
electromagnetic pulses of subpicosecond temporal duration.
These pulses have center frequencies in the terahertz range
and spectra that extend from zero to several terahertz. This
extraordinary large bandwidth results in significant temporal
reshaping of focused terahertz pulses, even when they propa-
gate through free space. An analysis of this diffraction-
induced pulse reshaping is usually carried out numerically or
analytically within the framework of the paraxial approxima-
tion. A modified hybrid spectral representation will be intro-
duced in this section that allows an exact analysis of a large
class of finite-energy focused pulsed beams.

FIG. 3. �Color online� �2+1�-D modified focus X wave: Re
�MFXW�x ,� ;�t�� vs x ,�, with �=1.5c, a0�=10−4 m, a1c=103 m, q=0 and
�0=60c �rad/s�. �a� n=0��t=0�; �b� n=5000��t=209.44 m�.
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A. Modified hybrid spectral representation

In the superluminal spectral representation given in Eq.
�2.1�, the following transformations are made from the wave
numbers �
 ,kx� to the new wave numbers �� ,
�:

− ��kx
2 + 
2 + 
��c/�� = ��c/�� + 
;

− ��kx
2 + 
2 + 
���/c� = � − 
 . �3.1�

One then obtains

��x,z,t� = �
−	

	

d��
−	

	

d
 e−i��z−ct�ei
�z+�t�

�exp
− ix�
2

�2 + 2�1 +
�

c
	�
����,
� .

�3.2�

This modified hybrid spectral representation is based on su-
perpositions of products of forward plane waves moving at a
fixed speed c and backward plane waves moving at the speed
��c. This representation allows a smooth transition from
superluminal localized waves to pulsed beams.

B. „2+1…-D splash modes and focused pulsed beams

Proceeding along the lines followed in Sec. II, it can be
established that a broad class of �2+1�-D superluminal-type
solutions based on the modified hybrid spectral representa-
tion is given by

��x,z,t� =
�a2 − i�z + �t� + ��x/��2 + �a2 − i�z + �t��2

��x/��2 + �a2 − i�z + �t��2

�f���x,z,t��;

��x,z,t� = − i�z − ct� + ��

c
+ 1	�2
a2 − i�z + �t�

− ��x/��2 + �a2 − i�z + �t��2�;

� =
1

���/c�2 − 1
; � � c, a2 � 0, �3.3�

with f�·� essentially an arbitrary function. A specific solution
of this type is the following:

�VFXW�x,z,t;�� =
�a2 − i�z + �t� + ��x/��2 + �a2 − i�z + �t��2

��x/��2 + �a2 − i�z + �t��2

� exp
− i��z − ct� + ���

c
+ 1	

��2
a2 − i�z + �t�

− ��x/��2 + �a2 − i�z + �t��2�� . �3.4�

This is a variant of the �2+1�-D FXW in Eq. �2.6�. In the
limit �→c, it reduces to a variant of the pure FWM; specifi-
cally,

�VFWM�x,�,�;�� =
1

�a2 − i�
e−i�� exp�− �

x2

a2 − i�
	;

� = z − ct, � = z + ct , �3.5�

which is an exact solution to the �2+1�-D scalar wave equa-
tion �1.3�. Superpositions of such solutions, viz.,

�SM/VFWM�x,�,�� = �
0

	

d� G����VFWM�x,z,t;�� �3.6�

are known as luminal splash modes �1�. Finite-energy lumi-

FIG. 4. �Color online� Transition to a �2+1�-D modified power spectrum pulse: Re
�MFXW�x ,� ;�t�� vs x ,�, with �=1.000 01c, a0�
=10−2 m, a1c=103 m, q=0, and �0=3c �rad/s�. �a� n=0��t=0�; �b� n=400��t=418.89 m�.
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nal pulsed beam solutions within the paraxial approximation
can be obtained as follows:

�PB/VFWM�x,z,t� = �
0

	

d� G����VFWM�x,�,� → 2z;�� .

�3.7�

These solutions obey the pulsed beam equation �16,17�

� �2

�x2 + 2
�2

�� � z
	�PB�x,z,t� = 0. �3.8�

Analogously to Eq. �3.6�, one obtains a new class of exact
�2+1�-D finite-energy splash modes by means of the spectral
synthesis

�SM/VFXW�x,z,t� = �
0

	

d� G����VFXW�x,z,t;�� . �3.9�

For an illustrative example, consider a spectrum analogous to
that given in Eq. �2.12�, viz.,

FIG. 5. �Color online� Spatiotemporal evolution of a focused pulsed beam from z=−1, through the focus �z=0� to z=1: �a�
Re
�FPB�x ,� ;z�� vs � ,x; �b� Im
�FPB�x ,� ;z�� vs � ,x; a1=10−4 m, a2=1 m, q=1, b=2 m−1 and �=1.000 000 1c. Temporal reshaping of a
focused pulse from z=−5, through the focus �z=0� to z=5: �c� Re
�FPB�0,� ;z�� vs �; �d� Im
�FPB�0,� ;z�� vs �; a1=10−4 m, a2=1 m, q
=1, b=2 m−1 and �=1.000 000 1c.
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G��� = �� − b�q exp�− a1�� − b��H�� − b�; b � 0. �3.10�

The integration in Eq. �3.9� can be carried out explicitly, yielding the splash mode solution

�SM/VFXW�x,z,t� = ��q + 1�
�a2 − i�z + �t� + ��x/��2 + �a2 − i�z + �t��2

��x/��2 + a2 − i�z + �t�2

1

Pq+1exp�− bP�; �3.11�

P � a1 + i�z − ct� − �2�1 +
�

c
	
a2 − i�z + �t�

− ��x/��2 + �a2 − i�z + �t��2� .

In the limit �→c, one obtains a luminal splash mode that is
a variant of the MPS solution given in Eq. �2.15�; specifi-
cally,

�SM/MPS�x,z,t� =
exp�− ib�z − ct��
�a2 − i�z + ct�

exp�− b
x2

a2 − i�z + ct�	
� �a1 + i�z − ct� +

x2

a2 − i�z + ct�	
−q−1

.

�3.12�

If, in this expression, z+ct is formally replaced by 2z, one
obtains a paraxial pulsed beam solution, viz.,

FIG. 6. �Color online� Spatiotemporal evolution of a nonparaxial splash mode pulse from z=−1, through the focus �z=0� to z=1: �a�
��SM/VFXW�x ,� ;z�� vs � ,x; �b� Re
�SM/VFXW�0,� ;z�� vs �; �c� Im
�SM/VFXW�0,� ;z�� vs �; The parameter values are as follows: a1=0.5 m,
a2=1 m, q=1, b=4 m−1, and �=2c.
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�PB/MPS�x,z,t� =
exp�− ib�z − ct��

�a2 − i2z
exp�− b

x2

a2 − i2z
	

��a1 + i�z − ct� +
x2

a2 − i2z
	−q−1

,

�3.13�

governed by Eq. �3.8�.
For values of � very close to c and under the restriction

a1 a2, the splash mode solution �SM/VFXW�x ,z , t� given in Eq.
�3.11� is indistinguishable from a paraxial focused pulsed
beam obeying Eq. �3.8�. The notation �FPB�x ,z , t� will be
used under these conditions. Figures 5�a� and 5�b� show, re-
spectively, the spatiotemporal evolution of the real and
imaginary parts of the solution �FPB�x ,� ;z� from the plane
z=−1 m, passing through the focus �z=0�, to the plane z
=1 m, for the parameter values a1=10−4 m, a2=1 m, q=1,
b=2 m−1 and �=1.000 000 1c. One clearly observes the
curved phase fronts, the polarity reversal, and temporal re-
shaping as the wave packet evolves through the focus. Fig-
ures 5�c� and 5�d� show, respectively, plots of
Re
�FPB�0,� ;z�� vs � and Im
�FPB�0,� ;z�� vs � for the same
parameter values and three ranges z. In an analogous �3
+1�-D situation, it is well known �18� that the symmetric real
solution at z=0 evolves in the farfield into an inverted ver-
sion of the antisymmetric imaginary solution at z=0. Fur-
thermore, the antisymmetric imaginary solution at z=0
evolves in the farfield into the symmetric real solution. Such
a transformation of the pulse temporal profile has been ob-
served in terahertz experiments �19,20�. In the �2+1�-D
problem under consideration, the results are slightly differ-
ent. Specifically, the real solution at z=0 evolves into an
inverted version of the imaginary solution at z=−5 m. On
the other hand, the imaginary solution at z=0 evolves into
the real solution at z=−5 m.

The spatiotemporal evolution of the modulus of the splash
mode solution �SM/VFXW�x ,z , t� given in Eq. �3.11� is de-
picted in Fig. 6�a� in a nonparaxial framework; specifically,
for the parameter values a1=0.5 m, a2=1 m, q=1, b
=4 m−1, and �=2c. Figures 6�b� and 6�c� are plots of
Re
�SM/VFXW�0,� ;z�� vs � and Im
�SM/VFXW�0,� ;z�� vs �, re-
spectively, for the same parameter values.

IV. CONCLUDING REMARKS

A hybrid spectral representation method has been pre-
sented that allows a smooth transition between superluminal,
or X waves, and luminal, or focus wave modes. The tech-
nique has been used to obtain both infinite energy �FXW�
and finite energy �MFXW� transversely and axially localized
pulse solutions to the �2+1�-D scalar wave equation. TE and
TM FXW and MFXW solutions to Maxwell’s equations can
readily be derived using the scalar-valued solutions obtained
in this paper as the z components of electric and magnetic
Hertz potentials. The hybrid spectral representation method
can be used to obtain FXW and MFXW localized pulse so-
lutions to the �n+1�-D, n�3, scalar wave equation. Also, it
can be used to derive analogous solutions to hyperbolic
equations �e.g., the Klein-Gordon equation� governing the
wave propagation in media characterized by temporal disper-
sion.

A modified hybrid spectral representation method has also
been presented that allows a smooth transition from superlu-
minal localized waves to exact splash modes. Within the
framework of a certain parametrization, the latter are ren-
dered indistinguishable from the paraxial luminal pulsed
beam solutions governed by the pulsed beam equation �3.8�.
The specific example given in Sec. III illustrates the
diffraction-induced temporal reshaping and polarity reversal
of extremely short �one-cycle� focused pulses.
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